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Two-way coupled, particle-laden simulations are performed in turbulent Couette
flow with the purpose of investigating the spectral extent of the particle influ-
ence on the turbulent energy cascade in wall-bounded flows. Direct numerical
simulation of the carrier phase is performed in conjunction with the Lagrangian
point-particle approximation for particles of three distinct inertia ranges: StK =

[O(1),O(10),O(100)]. Simulations are also performed at three increasing Reynolds
numbers (Reτ ≈ [125,325,900]) to determine the longevity of these effects as the
scale separation between large and small motions is increased. A spectral decom-
position of the turbulent kinetic energy (TKE) budget shows that two simultaneous
effects of particles are occurring: first, the mere presence of particles causes a
reduction of TKE production across nearly the entire wavenumber range, where the
particle Stokes number only determines the magnitude of this reduction; second, the
direct energy exchange term between the carrier and dispersed phases is relatively
small in magnitude compared to changes in production; however, its location in
wavenumber space is highly dependent on Stokes number and is influenced heavily
by preferential concentration. The combined effect of these distinct processes is
important to consider when developing large eddy simulation (or any other) two-way
coupled particle-laden turbulence parameterizations. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4923043]

I. INTRODUCTION AND MOTIVATION

The numerical simulation of particle-laden turbulent flows has seen significant advances in
recent years, yet remains a challenging problem motivated by processes spanning a wide range of
scientific and industrial applications. In particular, the phenomenon of turbulence modification by
a dispersed phase is a complex process which depends on many factors including particle size,
particle Reynolds number, mass loading, characteristic turbulence scales, flow type, gravitational
orientation, and particle inertia. Despite attempts to classify the general conditions under which to
expect turbulent kinetic energy (TKE) attenuation versus TKE modulation,1–3 the wide variety of
laboratory and numerical experiments continue to reveal complex couplings between the carrier and
dispersed phases.

A growing number of experimental observations in isotropic4–8 and wall-bounded9–11 turbulent
flows have shown that even a simple description of “TKE attenuation” versus “TKE augmentation”
is misleading, since not only does this classification depend on many flow parameters, but also a sin-
gle flow can exhibit both attenuation and modulation depending on location in physical space12 and
wavenumber space.13 Likewise, numerical simulations of two-way coupled, particle-laden turbulent
flows have revealed complex modifications to both the production and dissipation of TKE and/or
Reynolds stresses in isotropic14–17 and wall-bounded18–23 flows.

Based on dimensional grounds, the effects of a dilute concentration of particles whose diame-
ters are much smaller than the Kolmogorov length of the turbulence and whose particle Reynolds
numbers are small are only a function of the mass loading and particle Stokes number (defined
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as the ratio of the particle acceleration time scale to some flow time scale).16,24 For flows meeting
these conditions, standard point-particle techniques have been shown in many cases to provide
accurate representations of the relevant turbulence modification processes. These point particle
methods, particularly in the two-way coupling context, therefore parameterize processes at the sur-
face of the particle, including, for example, dissipation and the formation of wakes or other velocity
perturbations. Models which explicitly resolve the flow surrounding each particle (so-called particle
resolved models), while computationally expensive, are becoming increasingly utilized to explore
systems where the point particle method assuredly fails (e.g., when particles are larger than the
smallest flow scales24–26) as well as tests the development of dispersed phase models (including the
point particle model), see for example Tenneti and Subramaniam27 for a review of recent applica-
tions. The limitation of the particle resolved models, of course, lies in their computational expense,
and for studies including the present analysis, high Reynolds numbers, and/or particle numbers
preclude this as a feasible tool.

For small, heavy particles, therefore, modifications to turbulence must therefore ultimately
arise from the additional drag force resulting from a slip velocity at the particle surface. Indeed,
a common feature of experimental and numerical studies is a damping of turbulent fluctuations
through this drag (particularly in non-streamwise directions) after the addition of small inertial
particles.9,20,22,28 However, the ability of inertial particles to depart from fluid streamlines and
preferentially concentrate in high strain regions complicates a simple description of the collective
effects of particle drag. For example, in many energy spectra taken from two-way coupled isotropic
turbulence simulations, TKE enhancement is observed at high wavenumbers while TKE attenuation
is found at low wavenumbers (e.g., see the review by Poelma and Ooms29). In some sense, this
broad spectral influence of the dispersed phase is counterintuitive since the individual particle drag
is occurring near the smallest scales of the turbulence. The modification to small-scale turbulence
dissipation, however, can apparently somehow modify the motions responsible for TKE produc-
tion (i.e., at large scales) and thereby adjust the entire turbulence cascade. The same wavenum-
ber sensitivity is found in several wall-bounded studies as well,9,13,20,30,31 while several numerical
investigations show no such “crossover wavenumber.”18,22,23

It is noteworthy that nearly all particle-laden direct numerical simulation (DNS) studies to
date have been restricted to low Reynolds numbers (Reτ ≈ 180 typically, based on the channel
half-height and friction velocity) and therefore are limited in the range of scales with which the
particles can interact. At the same time, experiments are typically done at Reynolds numbers
currently difficult to achieve with DNS (e.g., Kulick et al.9), and thus, interpretation of experimental
results and comparison to point-particle simulations remains problematic. Richter and Sullivan32

therefore used DNS simulations of particle-laden planar Couette flow at friction Reynolds num-
bers of Reτ ≈ 125,325, and 900 to investigate the interaction of near-wall coherent structures with
small, heavy particles at varying Stokes numbers, focusing on their continued influence as the
flow Reynolds number became asymptotically large. Couette flow was chosen instead of the more
typical turbulent channel flow because (1) the total stress across the channel remains constant with
height, which is convenient for analyzing wall-normal momentum transfer and (2) in addition to the
typical near-wall vortices and high/low speed streaks, Couette flow exhibits additional large-scale
flow structures (herein referred to as “rollers”) with distinct time and length scales on the order
of the domain height. The existence of both small- and large-scale vortical structures at opposite
ends of the wavenumber spectrum provides a unique case where particles of varying Stokes num-
bers have multiple distinct flow features with which they can interact. By suppressing near-wall
hairpin structures, Richter and Sullivan32 suggest that small-scale particle/fluid interactions disrupt
the regeneration process of near-wall coherent structures, which could influence the entire energy
cascade in a way not easily described solely by an additional dispersed phase energy dissipation.

The current study builds upon the work of Richter and Sullivan32 by computing the spec-
tral energy budget for these high Reynolds number planar Couette flows. One pertinent question
which remains unanswered is regarding the collective effect of small particles on large-scale mo-
tions: can particles modify large-scale momentum and kinetic energy budgets by merely impacting
small-scale motions (i.e., providing an upscale influence), or can particles interact with large-scale
motions directly, perhaps through the formation of clusters much larger than an individual particle
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diameter? This answer has significant implications for multiphase modeling in two-fluid (i.e., Eule-
rian representations of the dispersed phase) or large eddy simulations.

In this context, this study is motivated by the scales over which small, Lagrangian point-
particles exert their influence, and how this changes the bulk TKE budget and resulting turbulence
statistics in wall-bounded turbulent flows. The recent study of Zhao et al.18 provides a detailed
look at the energy transfer between the carrier and dispersed phases in a turbulent channel, and
shows that while particles can extract kinetic energy from the central regions of the flow and
deposit it into the near-wall buffer region, the slip velocity between the phases leads to energy
dissipation and damping of spanwise and wall-normal fluctuations. Also recently, Gualtieri et al.33

highlight the importance of particle clustering on TKE production in homogeneous shear flow using
a spectral decomposition of the particle feedback term of the energy budget, while Druzhinin34

performs asymptotic theory for describing this term in isotropic turbulence. In the present study,
one-dimensional spectra are computed in both the streamwise and spanwise directions, and an
analysis of the production and particle-induced feedback terms reveals a dual set of feedback
mechanisms through which particles can modify the turbulence cascade.

As with numerous other numerical investigations of two-way coupling, we focus on the
simplest representation of small particles in order to form a baseline understanding upon which
to build from. The particles are assumed to be sufficiently heavy such that the hydrodynamic drag
is the dominant force term in the particle evolution equation,35 gravity is neglected to remove the
complications of particle settling, and particle-particle collisions are neglected. As a result, the
physical systems for which this study contributes insight are those where low volume fractions of
heavy particles whose diameters are much smaller than the Kolmogorov scale of the flow interact
with near-wall turbulence. These conditions are often met in geophysical and industrial applica-
tions, while care must be taken to extend the results to real systems where these basic assumptions
are violated.

II. METHOD

A. Numerical procedure

As described in past studies,23,32 the carrier phase DNS is solved using a pseudospectral method
with antialiasing in the homogeneous, periodic streamwise (x1), and spanwise (x2) directions, while
second order finite differencing is used in the inhomogeneous wall-normal (x3) direction. The equa-
tions solved are the incompressible Navier-Stokes equations for mass and momentum conservation,
modified with a particle coupling force Fi,

∂u j

∂x j
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂p

∂xi
+ νf

∂2ui

∂x j∂x j
+

1
ρ f

Fi, (2)

where νf is the carrier phase (“fluid”) kinematic viscosity, ρ f is the fluid density, ui is the fluid ve-
locity, and p is the pressure normalized by the fluid density. Equation (2) is integrated in time using
a low-storage, third order Runge-Kutta (RK) scheme for all terms.36 Incompressibility is enforced
by solving a pressure Poisson equation and correcting the velocity field to guarantee a divergence
free field at each RK stage. No-slip boundary conditions are employed at the domain walls, while
periodicity is used in the streamwise and spanwise directions.

The particle feedback force arises from the drag of individual Lagrangian point particles within
the flow. Forces other than the Stokes drag (e.g., added mass, lift, Basset history, gravity, and
particle-particle collisions) are neglected since the current focus is directed towards dispersed phase
systems characterized by small, heavy, noninteracting particles.35,37 Thus, each Lagrangian parti-
cle is transported throughout the domain by integrating the following equations for each particle
position xp, i and velocity vp, i in time:
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dxp, i

dt
= vp, i, (3)

dvp, i
dt
=

f i
mp
=
(
1 + 0.15Re0.687

p

) 1
τp

�
u f , i − vp, i

�
. (4)

Here, mp is the mass of the particle, f i is the drag force felt by an individual particle, τp is the

particle Stokes acceleration time scale (τp =
ρpd

2
p

18µ f
), where dp is the particle diameter, and u f , i is the

fluid velocity interpolated to the particle location using sixth-order Lagrange polynomials. The term
containing Rep (the particle Reynolds number: Rep =

dp |vp, i−u f , i |
ν f

) is a Reynolds number correction

to the Stokes drag,38 although the average particle Reynolds numbers rarely exceed O(1). The
coupling force Fi is computed by linearly projecting the negative of each individual particle force
(− f i) onto the eight surrounding nodes of the carrier flow computational grid cell. More details can
be found in Richter and Sullivan.23 It should be noted that for the present numerical setup, the order
of the velocity interpolation to obtain u f , i (sixth order Lagrange polynomial) does not match the
projection order (linear), which, as pointed out by Sundaram and Collins39 can lead to violations of
kinetic energy conservation between phases despite maintaining momentum conservation. For the
present results, however, tests have been performed with trilinear interpolation for the particle ve-
locity u f , i such that the interpolation schemes are symmetric, and differences in all results discussed
herein are within 2%.

B. Domain and simulation parameters

Before describing the various simulation parameters, it is important to emphasize the range
of validity of the current numerical experiments. By invoking the non-interacting point-particle
approximation, the results described in the subsequent discussions are only applicable to physical
systems where the approximation’s basic conditions are met: (i) the particles are smaller than the
Kolmogorov length scale of the flow, (ii) the density ratio between the dispersed phase and carrier
phase is large, (iii) the particle Reynolds numbers are small (i.e., no wakes or other distortions
of the surrounding velocity field), and (iv) the volume fraction is small, thus ensuring that the
role of particle collisions is small. Here, the maximum bulk volume fraction of the particles is
φV = 2.5 × 10−3, and all other simulations have bulk volume fractions O(10−4) or less. The density
ratio varies between 100 and 8000, the particle Reynolds number remains O(1) or lower, and the
ratio dp/ηK is maintained at a value of approximately 0.45. The particles are assumed to bounce
elastically from the walls.

Turbulent planar Couette flow develops between two infinitely parallel plates moving with
equal and opposite velocity U0 and separated by a distance H . The bulk Reynolds number of the
flow, Reb = HU0/νf , is varied between 8100, 24 000, and 72 000 by modifying the plate velocity
U0 and domain height H in such a way as to maintain an approximately constant Kolmogorov
length at the channel centerline across all Reb. The corresponding friction Reynolds numbers range
between Reτ ≈ 125 and Reτ ≈ 900. The computational mesh for each respective Reb has a grid size
[N1 × N2 × N3] of [128 × 256 × 128], [256 × 512 × 256], and [512 × 1024 × 512]. In all cases, the
domain size is specified to be [L1,L2,L3] = [2πH,2πH,H]. Grid stretching is employed in the x+3
direction so that the flow is fully resolved at the wall (∆x+3 ≈ 1 at the wall). Note that given the
linear projection operator which relates the drag force from each individual particle to the Eulerian
mesh, the use of grid stretching will inherently change the vertical range of influence of each
particle based on wall-normal distance. This work assumes that the influence of this wall-normal
variation of particle influence is small given both the findings of Sundaram and Collins39 (i.e., the
insensitivity of energy spectra to increasing the projection stencil) as well as the smoothness of this
stretching procedure.

It should also be noted that due to computational constraints, this domain size is not large
enough to capture the entire streamwise extent of the large-scale Couette rollers which develop
in the flow.40 However, as shown by Tsukahara et al.41 and confirmed in preliminary tests, TKE
and Reynolds stress statistics are relatively insensitive to this domain restriction. Furthermore, the
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TABLE I. Summary of simulation parameters: bulk Reynolds number Reb =HU0/ν f ; friction Reynolds number Reτ =

Huτ/2ν f ; bulk particle mass loading φm; bulk particle volume fraction φV ; particle Stokes number StK; particle Stokes
number based on wall units St+; ratio of particle density to fluid density ρp/ρ f ; number of particles Np.

Run Reb Reτ φm φV StK St+ ρp/ρ f Np

1 8 100 121 0.0 0.0 0
2 8 100 122 0.25 2.5×10−3 1.2 8.2 100 1.5×106

3 8 100 124 0.25 2.5×10−4 12 85 1000 1.5×105

4 8 100 122 0.25 3.1×10−5 97 656 8000 1.9×104

5 24 000 325 0.0 0.0 0
6 24 000 317 0.25 2.5×10−3 1.1 14 100 1.2×107

7 24 000 331 0.25 2.5×10−4 9.5 152 1000 1.2×106

8 24 000 321 0.25 3.1×10−5 94 1146 8000 1.5×105

9 72 000 917 0.0 0.0 0
10 72 000 848 0.25 2.5×10−3 1.1 25 100 9.6×107

11 72 000 869 0.25 2.5×10−4 9.8 262 1000 9.6×106

12 72 000 911 0.25 3.1×10−5 83 2307 8000 1.2×106

present goal is to characterize the general interactions of particles with distinct time and length
scales which exist in the flow, regardless of whether or not these large structures are influenced
by streamwise or spanwise periodicity. In subsequent discussions of the spanwise and streamwise
energy spectra, any influences of the domain size will be noted.

For each Reynolds number, four simulations are performed, including one unladen case and
one case for each of three different Stokes numbers at a constant mass fraction of φm = 0.25:
StK = O(1), O(10), and O(100), where StK = τp/τK is the ratio of the Stokes acceleration time scale
of the particle to the Kolmogorov time scale at the channel centerline. The Stokes numbers were
chosen to test a wide range of particle inertia and further characterize the influence of preferential
concentration and particle mass on two-way coupling in a simplified system. Table I contains a
summary of the relevant simulation data. Additional simulation and numerical method information
can be found in Richter and Sullivan.32

C. Spectral energy budgets

A primary goal of this study is to analyze the spectral content of both the TKE and its budget
in a two-way coupled, particle-laden turbulent wall flow. In particular, the spectral extent of the par-
ticle feedback force, as well as the spectral extent of TKE production modification, is of significant
interest. This is of critical importance for subgrid and two-fluid modeling, since two-way coupling
may manifest itself throughout the entire energy spectrum despite the particles having individual
diameters smaller than the smallest length scales of the turbulence. If the dissipative effects of parti-
cles are contained at high wavenumbers, for instance, this may be favorable for subgrid modeling
since a concentration-dependent dissipation may perhaps be sufficient for parameterizing the effects
of particles at the unresolved scales (see for example the discussions in Sundaram and Collins,17

where dissipation due to the slip velocity between particle and fluid appears as an extra source
of dissipation in isotropic turbulence). If the preferential arrangement of particles into clusters,
however, dictates the scales over which the energy budget is modified, this would pose a much more
challenging parameterization requirement. The present goal is to characterize the spectral extent of
particle modification, while model and parameterization development is left for future work.

Since the flow is homogeneous but not isotropic in a given horizontal plane, one-dimensional
spectra are taken independently in the streamwise and spanwise directions. This is opposed to
performing a two-dimensional spectral decomposition at each height z, which has been previously
done for unladen turbulent channel flows (e.g., Bolotnov et al.,42 Domaradzki43). In these cases, the
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streamwise wavenumber will be referred to as k1 and the spanwise wavenumber will be referred to
as k2.

To derive the spectral energy budget equations, the flow velocity and pressure are first de-
composed into their mean (capital) and fluctuating (prime) quantities: ui = Ui + u′i and p = P + p′.
Then, the fluctuating quantities are expressed as their discrete Fourier series in either the x1 or x2
directions (shown only for the fluctuating fluid velocity, same for pressure),

u′i(x1, x2, x3, t) =

k1

û′i(k1, x2, x3, t)eik1x1 (5)

or

u′i(x1, x2, x3, t) =

k2

û′i(x1, k2, x3, t)eik2x2, (6)

where, using the notation of Bolotnov et al.42 and Pope44 (p. 207), the Fourier coefficients are given
as either

û′i(k1, x2, x3, t) = Fk1 {u′(x1, x2, x3, t)} (7)

or

û′i(x1, k2, x3, t) = Fk2 {u′(x1, x2, x3, t)} . (8)

Fk1 and Fk2 (or Fkα in general, where α = 1 or 2; no summations implied throughout) refer to
discrete Fourier transforms in the x1 and x2 directions, respectively.

After decomposing the velocity and pressure into mean and fluctuating quantities, Equation (2)
is then Fourier transformed, resulting in equations either for û′i(k1, x2, x3, t),

∂û′i
∂t
+ û′3

∂Ui

∂x3
+ ik1û′iU1

+ ik1


k′1

ûi(k ′1)û′1(k1 − k ′1) +
∂

∂x2




k′1

ûi(k ′1)û′2(k1 − k ′1)

+

∂

∂x3




k′1

ûi(k ′1)û′3(k1 − k ′1)


= −ik1p̂′δi1 −
∂ p̂′

∂x2
δi2 −

∂ p̂′

∂x3
δi3 − νf |k1|2û′i +

∂2û′i
∂x2

2

+
∂2û′i
∂x2

3

+
1
ρ f

F̂i (9)

or û′i(x1, k2, x3, t),

∂û′i
∂t
+ û′3

∂Ui

∂x3
+U1

∂û′i
∂x1

+
∂

∂x1




k′2

ûi(k ′2)û′1(k2 − k ′2)

+ ik2


k′2

ûi(k ′2)û′2(k2 − k ′2) +
∂

∂x3




k′2

ûi(k ′2)û′3(k2 − k ′2)


= − ∂ p̂′

∂x1
δi1 − ik2p̂′δi2 −

∂ p̂′

∂x3
δi3 +

∂2û′i
∂x2

1

− νf |k2|2û′i +
∂2û′i
∂x2

3

+
1
ρ f

F̂i. (10)

For clarity, the dependencies of û′i, p̂′, and F̂ ′i have been suppressed except within the convective
terms. Note too that the structure of the mean velocity (Ui = [U1(x3),0,0]) and statistical homoge-
neity in the x1 and x2 directions have been used to simplify the equations. In Equations (9) and (10),

the nonlinear term Fkα


∂
∂x j

(u′iu′j)


appears as a summation over all wavenumbers since products
become convolutions under a Fourier transform, δi j refers to the Kronecker delta which is zero
unless i = j, and |kα |2 refers to the magnitude of the spanwise or streamwise wavenumber.

The goal is then to derive the equation governing the spectral component of the turbulent ki-
netic energy Ê1(k1, x3) or Ê2(k2, x3) (assumed averaged over both time and the x2 and x1 directions,
respectively), which are related to the height-dependent turbulent kinetic energy k(x3),
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k(x3) = 1
2


u′i(x1, x2, x3, t)u′i(x1, x2, x3, t)� =


k1

Ê1(k1, x3) =

k2

Ê2(k2, x3). (11)

Equation (11) merely states that summing the individual modes of the turbulent kinetic energy,
either decomposed into streamwise or spanwise modes, will recover the total turbulent kinetic en-
ergy k, which is only a function of wall-normal distance x3. Note that since k is written as a sum of
modes Ê1 or Ê2 rather than the integral over wavenumbers, the units of Ê1 and Ê2 are length squared
per time squared.

Since by definition Êα =
1
2



û′iû
′∗
i

�
, where [ ]∗ refers to the complex conjugate, equations gov-

erning Ê1(k1, x3) and Ê2(k2, x3) are obtained by, respectively, multiplying Equations (9) and (10) by
û′∗i (k1, x2, x3, t) and û′∗i (x1, k2, x3, t), averaging, and taking the real part,

∂Ê1

∂t
= 0 = P̂1(k1, x3) + T̂1(k1, x3) − ϵ̂1(k1, x3) + Ψ̂1(k1, x3), (12)

where

P̂1 = −
∂U1

∂x3
R


û′1û
′∗
3

�
, (13)

T̂1 = −R

ik1û′∗i


k′1

û′i(k ′1)û′1(k1 − k ′1)

− R

û′∗i

∂

∂x2


k′1

û′i(k ′1)û′2(k1 − k ′1)


− R

û′∗i

∂

∂x3


k′1

û′i(k ′1)û′3(k1 − k ′1)

− R

ik1û′∗1 p̂′ + û′∗2

∂ p̂′

∂x2
+ û′∗3

∂ p̂′

∂x3


+ νf

∂2Ê1

∂x2
3

, (14)

ϵ̂1 = 2νf |k1|2Ê1 + νf


∂û′∗i
∂x2

∂û′i
∂x2


+ νf


∂û′∗i
∂x3

∂û′i
∂x3


, (15)

Ψ̂1 = R


1
ρ f

û′∗i F̂i


. (16)

Likewise for Ê2,

∂Ê2

∂t
= 0 = P̂2(k2, x3) + T̂2(k2, x3) − ϵ̂2(k2, x3) + Ψ̂2(k2, x3), (17)

where

P̂2 = −
∂U1

∂x3
R


û′1û
′∗
3

�
, (18)

T̂2 = −R

û′∗i

∂

∂x1


k′2

û′i(k ′2)û′1(k2 − k ′2)

− R

ik2û′∗i


k′2

û′i(k ′2)û′2(k2 − k ′2)


− R

û′∗i

∂

∂x3


k′2

û′i(k ′2)û′3(k2 − k ′2)

− R

û′∗1

∂ p̂′

∂x1
+ ik2û′∗2 p̂′ + û′∗3

∂ p̂′

∂x3


+ νf

∂2Ê2

∂x2
3

, (19)

ϵ̂2 = 2νf |k2|2Ê2 + νf


∂û′∗i
∂x1

∂û′i
∂x1


+ νf


∂û′∗i
∂x3

∂û′i
∂x3


, (20)

Ψ̂2 = R


1
ρ f

û′∗i F̂i


. (21)

Here and throughout, angle brackets ⟨·⟩ refer to averages both in time and over the non-Fourier-
transformed horizontal direction. Summations over repeated indices in all three directions (1,2,3)
are implied.
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In order of terms on the right hand side of Equations (12) and (17), the first refers to shear
production of kinetic energy at the specified wavenumber; the second refers to the total spectral
transfer of TKE (a combination of triad interactions, viscous diffusion, and pressure fluctuations);
the third refers to viscous dissipation of TKE at the specified wavenumber; and the fourth is the
spectral particle coupling contribution.

Finally, by either summing Equation (12) over the streamwise wavenumbers or Equation (17)
over spanwise wavenumbers, the standard budget of TKE as a function of height can be recovered,

0 = −


u′1u
′
3

� ∂U1

∂x3
− ∂

∂x3



u′3k

�
+


u′3p′

�
− νf

∂k
∂x3


− νf


∂u′i
∂x j

∂u′i
∂x j


+

1
ρ f



u′iFi

�

= P(x3) + T (x3) − ϵ(x3) + Ψ(x3). (22)

Again, statistical homogeneity in time and in both horizontal directions has been implemented. The
terms in Equation (22), in order of the terms on the right hand side, respectively, correspond to
shear production P, transport T (turbulent, pressure, and viscous), viscous dissipation ϵ (actually
the “pseudo-dissipation,” see Pope44), and particle contribution to TKE Ψ.

III. RESULTS AND DISCUSSION

A. Wall-normal TKE budget

Starting with the TKE budget of Equation (22), Figure 1 shows the vertical profiles of the
normalized turbulent kinetic energy k for all Reynolds and Stokes numbers. Here and throughout,
the superscript [ ]+ refers to scaling with viscous wall units uτ, δν, and τν. k is normalized by the
square of the plate velocity difference U2

0 .
Figure 1 encapsulates the inherent difficulty of prescribing a description of “TKE attenua-

tion” versus “TKE augmentation,” since, among other factors, this may be a strong function of
wall-normal height depending on Stokes and Reynolds numbers. At the lowest Reynolds num-
ber, for example, little change is found in k for StK = O(1) relative to the unladen case, while
StK = O(100) particles slightly damp turbulent kinetic energy throughout the entire domain half-
height. This seemingly contradicts the observations that StK = O(1) particles maximize prefer-
ential accumulation near the walls45 and thus modifications to near-wall coherent structures and

FIG. 1. Profiles of k/U2
0 versus wall-normal height x+3 over the lower half of the domain for (a) Reb = 8100, (b)

Reb = 24 000, and (c) Reb = 72 000. Solid lines refer to the unladen cases, dashed lines to the StK =O(1) cases, dotted
lines to the StK =O(10) cases, and dashed-dotted lines to the StK =O(100) cases.
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Reynolds stresses,23,32 with decreasing effectiveness at increasing Stokes numbers. Furthermore, the
StK = O(10) particles damp TKE below x+3 ≈ 11, yet enhance it above.

At Reb = 24 000, the picture is similar, except that the StK = O(1) particles now damp k
nearly to the same degree as the StK = O(100) particles throughout most of the domain, while
the TKE enhancement of the StK = O(10) particles is more pronounced. Finally, at the highest
Reynolds number, the StK = O(10) particles no longer enhance TKE (and instead damp), while
the StK = O(1) particles exhibit the strongest TKE attenuation over nearly the entire domain
half-height.

The trends in Figure 1 can be broadly explained as follows. In turbulent Couette flow, the
canonical near-wall structures of channel and boundary layer flow are found: high- and low-speed
streaks, hairpin packets, quasi-streamwise vortices, etc. Simultaneously, large-scale turbulent mo-
tions which scale on the domain height H (the Couette rollers) create qualitatively similar near-wall
convergence zones (i.e., streaks), but on far-removed (larger) length and (slower) time scales.40,41

These lead to low-speed “streaks” which, unlike those in channel and boundary layer flows, span
the entire length of the simulated domain and have a characteristic spanwise wavelength of roughly
3 − 4H . These are clearly visible in the instantaneous snapshots of Figure 2 both at x+3 = 10 and
x+3 = 80 when Reb = 24 000. The StK = O(1) particles, at all Reynolds numbers, have time scales
near those of the traditional near-wall structures and thus accumulate in the small-scale near-wall
streaks and weaken the motions responsible for them (see Figures 2(a) and 2(b) and Richter and
Sullivan32). The StK = O(10) particles, however, have too much inertia to successfully accumu-
late on these scales, but instead have acceleration time scales associated with the Couette rollers
and therefore accumulate in the large-scale convergence zones (see Figures 2(c) and 2(d)). The
StK = O(100) particles do not experience strong preferential accumulation since their inertial time
scale is longer than any available time scale in the flow (Figures 2(e) and 2(f)).

Oversimplifying somewhat (and drawing from the phenomenological evidence described for
example in Richter and Sullivan,23 Richter and Sullivan,32 and Lee and Lee46), the collection
of particles into either the large- or small-scale upwelling (i.e., low-speed) streaks increases the
streamwise velocity fluctuation variance



u′21

�
by bringing their relatively low momentum from the

near-wall regions and thus increasing their strength (see Figure 3). In some regions of Figure 3,
the streamwise velocity fluctuations are damped, particularly at the highest Reynolds number, but
this is mostly due to a shift in the wall-normal location of the variance peak. At the same time,
the accumulation process damps the wall-normal and spanwise velocity fluctuations



u′22

�
and



u′23

�

associated with near-wall structures and weakens their contribution to the total TKE (see Figure 4
for wall-normal fluctuations). Similar effects have been seen in several experimental and numerical
studies on channel flow.12,19,22

The behavior of k in Figure 1, therefore, is a balance between the strengthening of streamwise
fluctuations and damping of wall-normal and spanwise fluctuations for all different Stokes and
Reynolds numbers. StK = O(100) particles, for example, do not collect in any streaks and thus show
only TKE attenuation at all Reynolds numbers through their collective, homogeneously distributed
drag forces. The StK = O(10) particles accumulate in the large-scale convergence zones, which
themselves are not confined to near-wall regions, and thus, the strengthening of these large-scale
streaks wins out over wall-normal and spanwise velocity fluctuation damping in the channel center,
but not at the walls (see particularly Figures 3(b) and 4(b)). At the highest Reynolds number, it is
the strong attenuation of wall-normal and spanwise velocity fluctuations that dictates the overall
behavior of k throughout the domain height. At the lower Reynolds numbers, this is only true at
sufficiently close distances to the wall.

The current focus, however, is on the TKE budget and its subsequent spectral decompo-
sition. Figure 5 shows the vertical profiles of each of the terms in the TKE budget of Equa-
tion (22): production P, dissipation −ϵ , transport T , and particle contribution Ψ. Generally speak-
ing, Figure 5 shows that TKE is produced primarily in the buffer region, with a peak of P occurring
around x+3 ≈ 10 for all Reynolds numbers. This is typical of wall-bounded turbulent flows (see
Smits et al.,47 for example). The transport term T then removes TKE from this location and brings
it towards the wall to be dissipated. Significant TKE dissipation occurs both at the location of
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FIG. 2. Contours of instantaneous streamwise velocity fluctuations u′1/U0 along with individual particle locations for
Reb = 24 000 at heights of x+3 = 10 (left column) and x+3 = 80 (right column). Top row: StK =O(1); middle row: StK =O(10);
bottom row: StK =O(100). Entire horizontal domain is shown and particle sizes are not to scale.

peak production and the walls, in balance with the local TKE production (buffer layer) or transport
(viscous sublayer).

Figures 5(g)–5(i) show the particle contribution to TKE for the various Reynolds and Stokes
numbers and contain several important features. First, the TKE source due to the dispersed phase
can be positive or negative, depending on Stokes number and wall-normal height. At all Reynolds
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FIG. 3. Same as Figure 1, except for streamwise velocity fluctuation variance


u′21

�
/U2

0 .

numbers, StK = O(10) and StK = O(100) particles act as sinks of TKE across the entire domain,
peaking in the same general location as TKE production. This is consistent with the idea that heavy,
inertial particles inhibit strong turbulent fluctuations by simply acting as obstacles (i.e., through
their drag), since the buffer region contains many such turbulent motions, as evidenced by the
peak in TKE production. The StK = O(1) particles, on the other hand, act as a source of TKE
throughout the viscous and buffer layers, only becoming a sink at heights greater than x+3 & 11.
This is primarily due to their ability to preferentially concentrate in low-speed streaks, where, as
they collect into these regions, they lag the fluid on average thus resulting in a positive correlation
between the streamwise particle force and velocity fluctuation (that is, the



u′1F1

�
component of

Ψ is dominant, confirmed but not shown here. Also see Lee and Lee46 for a detailed description
of this process). The tendency of the StK = O(10) particles to collect in regions associated with
the Couette rollers does not lead to the same behavior of Ψ since, despite a repeated dominance
of the streamwise component of Ψ, the additional time history of the more inertial particles leads
to a negative correlation between the velocity fluctuations and particle force as they collect in the
large-scale, low-speed streaks.

FIG. 4. Same as Figure 1, except for wall-normal velocity fluctuation variance


u′23

�
/U2

0 .
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FIG. 5. Components of the TKE budget as given by Equation (22). Different columns correspond to different Reynolds
numbers (labeled). Top row (a)-(c) Production P (thick) and dissipation −ϵ (thin) of TKE. Middle row (d)-(f) Transport T
of TKE. Bottom row: particle contribution to TKE Ψ. Note the varying scales on the abscissas and the use of logarithmic
scaling on the ordinate. Different line types refer to different Stokes numbers, see legend and Figure 1.

More important, however, is the observation that the particle source term is roughly an order
of magnitude smaller in comparison with the TKE production, dissipation, and transport, indicating
that the particles do not modify turbulence by merely acting as a source or sink of TKE throughout
the flow (although the interphase energy transfer can be important for distributing kinetic energy be-
tween near-wall and outer-layer regions, see Zhao et al.18). The direct local influence of Ψ is instead
overshadowed by modifications of P, ϵ , and T with the addition of the dispersed phase, particularly
at high Reynolds numbers. TKE production, for example, is dependent upon the Reynolds stress
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⟨u′w ′⟩, which is widely observed to decrease with the addition of particles.12,20,23 Therefore, the
primary influence of the particles is to decrease the production of TKE, which in turn modifies both
TKE transport and dissipation as well. The combined effect on k due to the dispersed phase is seen
in Figure 1, which does not necessarily reflect the expected behavior if one only considers the sign
of the particle feedback term Ψ.

Generally speaking, the reductions of P, ϵ , and T are maximized when StK = O(1) and
decrease in magnitude as StK increases. Again, the reason for this is the maximized ability with
which StK = O(1) particles can preferentially concentrate in regions associated with near-wall
hairpins and vortices, thus inhibiting their motion.32 This dependence of P, ϵ , and T on StK is
qualitatively different than Ψ, which exhibits altogether different behaviors between StK = O(1)
versus StK = O(10) or StK = O(100) particles. More importantly, the magnitude of the decreases
of P, ϵ , and T increases significantly with Reynolds number, indicating that the scale separation
between the largest and smallest scales in the flow is playing a large role, and suggesting that
particles, despite having diameters smaller than the Kolmogorov scale, are somehow modifying the
entire cascade of turbulent kinetic energy, particularly when the range of the cascade becomes large.
It also suggests that even at Reτ ≈ 900, these particle-laden flows have not yet reached Reynolds
number independence.

B. Spectral energy budgets

Figure 6 presents the kinetic energy modes Êα(kα) as a premultiplied spectra so that the
observed area is proportional to the total normalized TKE:

 ∞
0 kαÊαd (ln kα) = k/(Lα/2π) (recall-

ing that Lα is the domain length in the α = 1 or α = 2 directions). The spectral decompositions are
shown for two different heights: x+3 = 10 (roughly where the peak in TKE production is found, cf.
Figure 5) and x+3 = 80 (within the logarithmic layer).

FIG. 6. Premultiplied normalized energy spectra plotted on semilogarithmic axes. Top row (streamwise): k1Ê1/(U2
0/H )

versus k1H ; bottom row (spanwise): k2Ê2/(U2
0/H ) versus k2H . Left column: spectra taken at wall-normal height of x+3 = 10;

right column: spectra from x+3 = 80. Line types indicate various StK (see legend in panel (a)) while line color refers to various
Reb (see legend in panel (b)).
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In Figures 6(a)-6(d), several notable features are found. Starting with Figure 6(a), the lowest
Reynolds number shows a near uniform reduction in the energy content of all streamwise modes,
with the magnitude of the reduction maximized when StK = O(1) and decreasing monotonically
with increasing StK (except at the lowest wavenumber). As the Reynolds number increases above
Reb = 24 000, however, particles with StK & 10 continue to reduce energy at all streamwise modes,
while StK = O(1) particles exhibit a dual effect: high-wavenumber energy modes are damped while
low-wavenumber modes are amplified. Figure 1 shows that the net result is a decrease in the
total TKE, which occurs because the high-wavenumber energy reduction is significantly larger
than the low-wavenumber amplification. Away from the wall, however, Figure 6(b) shows that
this low-wavenumber amplification for StK = O(1) particles is suppressed, although there is still a
wavenumber dependence on the Ê1 reduction that distinctly differs from the more inertial particles.
As will be shown later (Figure 8), this wavenumber dependence is due to the direct energy source Ψ̂.

Figures 6(c) and 6(d) show the kinetic energy modes taken in the spanwise direction, where the
most obvious difference from the streamwise spectral decomposition is the large peak at very low
wavenumbers. This peak represents the large-scale Couette rollers, within which the StK = O(10)
particles are susceptible to preferential accumulation. In the logarithmic region (x+3 = 80), it is clear
that these modes contain most of the energy content. Before describing the effects of particles,
it must be noted that the limited spanwise domain size and the imposed periodicity influence the
location and spectral resolution of these peaks, and that caution must be taken when generalizing
their behavior. Ideally, spanwise and streamwise ranges of at least 2-3 times as large should be
used to capture converged spectral statistics of these large-scale features. In the tradeoff between
achievable domain size and Reynolds number, however, the current study chooses to focus on the
effects of Reb while using a domain width that is assumed to be large enough to capture the essential
features of particle interaction with Couette rollers.

Nevertheless, it is clear that the StK = O(10) particles, at both wall-normal heights, signifi-
cantly increase the energy content of these roller modes (the shift in the peak wavenumber, for
example when Reb = 24 000, is likely influenced by spanwise periodicity and cannot be claimed
as a general result). This enhancement of the roller TKE contribution is less prominent for the
largest Reynolds number. For particles with inertial time scales either larger or smaller than the
StK = O(10) particles, the energy contained in these low-wavenumber modes is damped, particu-
larly when StK = O(1).

At high wavenumbers, the effects of particles are quite similar to that of the streamwise energy
modes. Significant reductions in energy content are found at all Reb and StK, particularly at high
Reb, with a wavenumber dependence of the reduction magnitude (and slight amplification of Ê2)
due to StK = O(1) particles emerging only at high Reynolds number. Again, this will be argued as
resulting from the direct contribution to TKE from the particles.

Overall, the particles tend to reduce the kinetic energy modes across all scales, with two notable
exceptions: StK = O(1) particles have the ability to amplify energy for certain low wavenumbers
due to the direct particle TKE source Ψ̂α (to be shown below), and the preferential accumula-
tion of StK = O(10) particles results in an increased Couette roller contribution to TKE at low
wavenumbers. The low-wavenumber enhancement of energy due to StK = O(1) particles is almost
never strong enough to overshadow the much stronger reductions in Êα at higher wavenumbers
(thus, StK = O(1) particles suppress the total TKE at both heights, see Figure 1). The Couette mode
enhancement due to StK = O(10) particles, on the other hand, leads to an increased total TKE for
the lower two Reb cases where this effect is most prominent (i.e., x+3 = 80). Thus, while nearly all
kinetic energy modes are suppressed by the addition of particles, the ability of particles to accumu-
late in energetic regions (e.g., rollers) or act collectively as clusters (e.g., StK = O(1) particles) can
potentially increase the total TKE in certain regions of the flow.

As described previously, one of the primary emphases of this study is to properly characterize
the two-way coupling influence of the particles. Figures 1 and 5 were used above to illustrate that
the bulk effects of inertial particles on turbulent kinetic energy in wall-bounded turbulence may
not be captured solely by the behavior of the particle feedback term Ψ. Instead, particle-induced
changes in TKE production greatly reduce the amount of turbulent kinetic energy that exists
throughout the entire cascade, despite the small physical size of the particles themselves.
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FIG. 7. Premultiplied normalized production spectra plotted on semilogarithmic axes. Top row: k1P̂1/(U3
0/H ) versus k1H ;

bottom row: k2P̂2/(U3
0/H ) versus k2H . Left column: spectra taken at wall-normal height of x+3 = 10; right column: spectra

from x+3 = 80. Line types indicate various StK (see legend in panel (a)) while line color refers to various Reb (see legend in
panel (b)).

Figures 7 and 8 therefore show P̂α and Ψ̂α, the modal decompositions of TKE production and
particle source, respectively, as a function of both streamwise and spanwise wavenumbers. For sake
of brevity, the spectral transport T̂α and spectral dissipation ϵ̂α are not shown, since the behavior
of P̂α and Ψ̂α is found to illustrate the most important details of particle-induced modifications to
the TKE budget. Note that it is generally true that the changes to spectral dissipation mirror the
behavior of P̂α. As before, the quantities P̂α and Ψ̂α are plotted in a way such that the observed area
is proportional to the total production P and particle source Ψ.

The underlying tendency of particles to damp turbulent kinetic energy across all modes
(Figure 6) is seen in Figures 7(a)-7(d) as resulting from the near broadband reduction of P̂1 and
P̂2 across all wavenumbers. For high Reynolds numbers, this reduction is quite large, both in terms
of P̂1 and P̂2. The only exception to this broadband reduction is for P̂2 at x+3 = 80 at wavenumbers
associated with the Couette rollers at Reb = 24 000, in agreement with Figure 1(b).

It is important to note that the strong reduction of P̂α is sensitive to particle Stokes number only
insomuch that StK determines the magnitude of the reduction and not necessarily the spectral range
where it occurs. Thus, differences in the preferential accumulation tendencies of particles with
different inertias apparently alter the magnitude of TKE production but not the spectral location
of this interaction. This is true for both spanwise and streamwise production modes P̂1 and P̂2.
In Richter and Sullivan,32 it is argued that this difference in efficiency is directly related to the
ability of particles to collect in ejection regions (and thus regions of high Reynolds stress) near the
wall. The wavenumber dependence of the particle-induced changes in Êα seen above in Figure 6,
for example when StK = O(1) at high wavenumbers near the wall, is instead a result of the direct
particle contribution Ψ̂α.

This is clearly seen in Figure 8, which shows that the particle energy source Ψ̂α generally
has a strong wavenumber dependence which is highly sensitive to StK. For streamwise modes (Ψ̂1,
Figures 8(a) and 8(b)), StK = O(1) particles at all Reynolds numbers act as a direct energy sink at
high wavenumbers while acting as a source at low wavenumbers. This behavior is most obvious
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FIG. 8. Premultiplied normalized particle source spectra plotted on semilogarithmic axes. Top row: k1Ψ̂1/(U3
0/H ) versus

k1H ; bottom row: k2Ψ̂2/(U3
0/H ) versus k2H . Left column: spectra taken at wall-normal height of x+3 = 10; right column:

spectra from x+3 = 80. Line types indicate various StK (see legend in panel (a)) while line color refers to various Reb (see
legend in panel (b)).

at the x+3 = 10 location. While the wavenumber dependence of Ψ̂α is in some ways similar to the
DNS results of Gualtieri et al.33 and modeling analysis of Druzhinin34 for StK ≈ 1, the overall
behavior found in the present case is actually opposite: both Gualtieri et al.33 and Druzhinin34 find
a direct particle sink of TKE at low wavenumbers and a source of TKE at high wavenumbers when
StK ≈ 1, highlighting the fundamental differences in two-way coupling between wall-bounded and
homogeneous turbulent flows. For instance, the homogeneous shear flow simulations of Gualtieri
et al.33 show that the streamwise component of their particle coupling term acts as a source at low
wavenumbers, but that this is overwhelmed by the TKE extraction of the other two components at
the same low wavenumbers (their Figures 14 and 15). In the present case, this streamwise source
component dominates and ultimately manifests itself as a direct particle source at low wavenum-
bers, likely due to particle clustering within near-wall low-speed streaks.

The ability of StK = O(1) particles to act as a direct source of TKE at low wavenumbers and
a sink of TKE at high wavenumbers is in stark contrast to particles with StK = O(10), which act
as sinks of TKE throughout the entire wavenumber range. StK = O(100) particles also act as direct
sinks throughout all available streamwise wavenumbers, but their lack of preferential concentration
makes this contribution very small.

Figures 8(c) and 8(d) show similar behavior when considering spanwise modes, in that StK =

O(1) particles act quite differently compared to more inertial particles, particularly at the near-wall
location. At x+3 = 10, StK = O(1) particles now act as a source of TKE at nearly all spanwise
wavenumbers while more inertial particles act as sinks. As for the streamwise modes near the
wall, the magnitude of Ψ̂2 is largest for the StK = O(10) particles. In the logarithmic region, the
three different Stokes numbers behave similarly at high wavenumber (with various magnitudes of
Ψ̂2), while it is clear that, again, StK = O(10) particles tend to act as a source of TKE at the low
wavenumbers associated with the Couette rollers. At the highest Reynolds number, all particles act
as a source of TKE at these low wavenumbers.
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C. Discussion

As mentioned above, it is well-established45,48 that particles preferentially concentrate rela-
tive to motions associated with their own acceleration time scale. Recall that for the definition
of StK used presently, the StK = O(1) particles collect in small-scale high- and low-speed streak
regions near the wall, StK = O(10) particles collect instead in regions associated with the Couette
rollers due to their larger inertia, and StK = O(100) particles experience relatively little preferential
concentration (see Figure 2). At the same time, Figures 7 and 8 show that there are two distinct
routes through which particles can modify the turbulent cascade of kinetic energy: (1) a broadband
reduction of P̂α which is only sensitive to StK in regards to the magnitude of the reduction, with
no strong wavenumber dependence and (2) a direct particle energy exchange Ψ̂α which has a
wavenumber dependence which changes significantly based on StK. While the former is primarily a
result of a broad damping of wall-normal velocity fluctuations (e.g., Figure 4, consequently lower-
ing the Reynolds stress), the latter is dependent on the degree and scale of preferential concentration
and primarily affects the behavior of streamwise velocity fluctuations (e.g., Figure 3).

Figure 9 shows a normalized power spectral density (PSD) of the mass concentration fluctu-

ation: ⟨ĉ′ĉ′∗⟩
⟨c′2⟩ . This is provided both as a function of both streamwise (top) and spanwise (bottom)

wavenumbers, where ĉ′ is the Fourier coefficient of the concentration fluctuation (via Equations (7)
or (8)), and



c′2

�
is the height-dependent concentration fluctuation variance, which is related to the

Fourier coefficients in a way similar to Equation (11),


c′2

� (x3) =

k1

⟨ĉ′ĉ′∗⟩ (k1, x3) =

k2

⟨ĉ′ĉ′∗⟩ (k2, x3), (23)

where parentheses reflect a functional dependence. Here, the Eulerian concentration field is
computed by summing all particle masses in a grid cell and dividing by the cell volume, and thus,
the highest wavenumber which can be represented in the PSD is limited by the modes which the
Eulerian grid can represent.

FIG. 9. Power spectral density of the particle mass concentration fluctuation field, normalized by the fluctuation variance at
the local height, ⟨ĉ′∗ĉ′⟩

⟨c′2⟩ , plotted as a function of streamwise (top row) or spanwise (bottom row) wave numbers k1 and k2. As

in other plots, colors refer to Reb, line types refer to StK (see legends). Left column taken from x+3 = 10 and right column
taken from x+3 = 80.
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Figure 9 therefore represents the concentration fluctuation energy contained at each wavenum-
ber in either the streamwise or spanwise direction, again shown for heights near the peak of energy
production (x+3 = 10) and within the logarithmic region (x+3 = 80). The trends quantitatively confirm
the general behavior seen in the snapshots of Figure 2: elongated, streamwise-oriented structures of
preferential concentration (where it exists) lead to low wavenumber content for streamwise modes
and one or more peaks at low and intermediate wavenumbers for the spanwise modes. Near the
wall, this behavior is more pronounced.

In general, the concentration fields associated with StK = O(1) particles contain a wider range
of wavenumber content due to their ability to collect in small-scale regions, and this is true at all
Reb and at both heights. For the streamwise modes (top row), the maximum of the PSD occurs at
the lowest wavenumbers. For the spanwise modes (bottom row), a peak exists at all Reb correspond-
ing to the Couette rollers, with a smaller, broader secondary peak at higher wavenumbers. This
secondary peak corresponds to the small-scale preferential concentration exhibited by StK = O(1)
particles and indicates that these clusters exist over a broad range of spanwise scales. At x+3 = 80,
the streakiness of the particle accumulation decreases significantly (see Figure 2), and therefore,
a closer similarity between the streamwise and spanwise PSD structures exists at all Reb (right
column).

For StK = O(10) particles, again the images of Figure 2 are confirmed. At both heights, the
streamwise PSD modes are maximized at the lowest wavenumbers (associated with long, straight
concentration streaks), with a much steeper decrease with increasing k1 than the StK = O(1) parti-
cles. The spanwise PSD modes confirm that the particles tend to align in the regions associated
with Couette rollers, with no secondary peak as with the StK = O(1) particles. For StK = O(100)
particles, there is almost no wavenumber dependence of the concentration fluctuation field at any
height or at any Reb, indicating that these particles remain homogeneously distributed, except for a
minor influence of the Couette rollers at the highest Reynolds number. The near-horizontal line for
StK = O(100) particles therefore represents the average PSD magnitude for all other StK curves at
the same Reb since the normalization ensures that the integrals are the same.

The most important feature of Figure 9, however, is its relation to both the production spectra
P̂α and the particle feedback term Ψ̂α seen in figures 7 and 8. As described above, the shear
production shown in Figures 5(a)-5(c) was found to be reduced significantly at nearly all wavenum-
bers (Figure 7). The effect of StK was only to roughly determine the magnitude of this reduc-
tion, with the StK = O(1) particles exhibiting the largest reduction at all Reb. At the same time,
certain regions of the streamwise and spanwise energy modes were found to experience a highly
wavenumber-dependent modification, whose location was sensitive to StK. This was found to result
from the smaller-in-magnitude particle feedback term Ψ̂α (Figure 8).

By inspecting the trends in Figure 9, loose connections can be made between the particle ex-
change term Ψ̂α and the modes containing more concentration fluctuation energy. Most obviously,
the significant dependence of the shape of Ψ̂α on StK at both wall-normal heights gives evidence
that the particle exchange term is highly susceptible to preferential concentration, which Figure 9
partially quantifies. While there are no distinct one-to-one features which exist in the concentra-
tion PSD whose direct effect can be found in the Ψ̂α spectra, general features exist which gently
indicate that there is a connection between the two (which is perhaps unsurprising33). Near the
wall, for example, Figure 7(a) shows that the StK = O(1) particles act to extract energy at small
scales while providing a source of TKE at large scales. The transition from energy amplification
to energy extraction occurs at a wavenumber closely corresponding to the location where the mass
concentration PSD drops below the average level (i.e., that exhibited by the StK = O(100) parti-
cles). Similarly, the first of the two positive peaks found in Figure 9(c) at high wavenumbers for
StK = O(1) particles is found to roughly correlate with the wavenumber location of the secondary
peak in the concentration PSD. The second high wavenumber peak corresponds to the location
where the concentration PSD goes below the average level.

Assuming that the spanwise concentration PSD provides more insight into the ability to prefer-
entially concentrate (since the small streaks are oriented in the streamwise direction), Figures 8(c)
and 9(c) indicate that a secondary peak in the concentration fluctuation PSD for StK = O(1) is
concurrent with a positive TKE source at slightly higher wavenumbers. This suggests that the
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preferential concentration of these StK = O(1) particles enables them to act as a source of energy
at high spanwise modes by acting collectively — consistent with the increase of



u′2

�
due to the

strengthening of low-speed streaks — whereas the larger particles act even more strongly as a sink
at the same spanwise wavenumbers since they merely act as independent sources of dissipation.

IV. CONCLUSIONS

Two-way coupled simulations of turbulent Couette flow were performed using DNS of the
carrier phase and the standard Lagrangian point-particle approximation for the dispersed phase. At
a constant dispersed phase mass fraction of φm = 0.25, simulations of three different magnitudes
of particle Stokes number (StK = [O(1),O(10),O(100)]) were performed at three increasingly large
Reynolds numbers: Reb = [8100,24 000,72 000] (corresponding to friction Reynolds numbers of
approximately [125,325,900]). The focus of this study was to observe and interpret the spectral
distribution of the key terms of the turbulent kinetic energy budget, with the hopes of better under-
standing how particles modify turbulent kinetic energy in wall-bounded flows in order to aid and
inform model development.

It is shown that the aggregate behavior of TKE is a complex function of wall-normal height,
Stokes number, and Reynolds number, and that the individual components of k (namely, the stream-
wise and wall-normal velocity fluctuations) are affected differently by the presence of inertial
particles. Low-speed streaks at the wall can be strengthened if preferential accumulation of particles
occurs, while wall-normal velocity fluctuations are universally damped. This leads to increased k in
some regions of the flow with decreases of k in others.

When inspecting the TKE budget, it is found that particles significantly reduce turbulent shear
production, and that this reduction occurs across nearly all spanwise and streamwise wavenumber
modes. At the same time, the direct particle contribution to the TKE budget is an order of magnitude
smaller than other terms in the TKE budget but has the ability to modify the wavenumber depen-
dence of the total kinetic energy. In some regions of wavenumber space (e.g., the Couette rollers),
particles can enhance TKE directly.

Physically, a picture develops which can be described as follows. Particles have two simulta-
neous effects in this wall-bounded turbulent flow: (1) a broadband reduction of TKE production
in wavenumber space, where StK only has the effect of modifying the magnitude of this reduction
and (2) a direct particle contribution which is tightly linked to preferential concentration, where the
collective effects of particle clusters can directly influence TKE content at different wavenumbers.

For StK = O(1) particles, this effect is most pronounced because these particles have the
maximum ability to collect into small-scale regions. This preferential accumulation leads to a very
large reduction of TKE production at all wavenumbers, while having the dual effect of increasing
modal energy content at low wavenumbers due to the collective action of the particles. StK = O(10)
particles exhibit similar behavior, though their preferential concentration is confined only to the
large-scale rollers since their inertia is too large to collect among the small-scale hairpin vortices.32

Their direct interaction therefore comes mostly at the scales associated with the Couette rollers,
while their influence on production remains broadband.

This general picture suggests that any model of turbulence modulation must capture two
distinct features at the same time. The first is much simpler, since the reduction in production is
likely a result of the severe damping of the wall-normal velocity fluctuations. As shown in Richter
and Sullivan,32 StK = O(1) particles collect precisely in the regions associated with turbulent ejec-
tions from the wall, which maximizes their ability to modify wall-normal velocity fluctuations. The
only effect of StK in this process is to change the efficiency of this process — the actual time history
of the particle appears to have no direct influence. A crude model based, for example, merely
on artificially damping vertical fluctuations based on local particle concentrations works well in
reproducing the general trend of production reduction (not shown here).

The direct particle feedback, on the other hand, is tightly linked to the preferential concentra-
tion of the particles and thus is a complex function of StK since the time history of the particles
becomes important. The particles act collectively to modify turbulence, which can manifest itself as
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either a source or sink. In many regions of the flow, this effect is much smaller in magnitude than
the changes in TKE production, but the spectral distribution of energy can be modified significantly
even if the total energy is identical. It is this feature of particle-laden flows which appears to pose
the largest challenge to bulk-scale modeling.

Finally, the similarity between particle-induced turbulence modification and viscoelastic turbu-
lence must be noted. In both cases, the presence of a constituent (either particles or polymer
molecules) which is much smaller in size than any of the turbulent motions may have inherent
dynamical time scales which can approach or even exceed those found in the turbulence (indicated
by the Stokes number in the present case and by the Deborah or Weissenberg number for the case
of polymer additives). It has been argued that due to the matching of time scales, small polymers,
despite their small size, can directly interact with large-scale structures and impede their motions.
Recently, Valente et al.49 find what they describe as a “polymer-induced energy cascade,” where
energy is directly extracted from large scales and either dissipated by the polymers themselves or
given back to the flow to be dissipated by viscous motions.

In the present context, it is helpful to recall the original motivation for this study: can small
particles collectively modify motions across all turbulent scales, or is there perhaps an upscale effect
that allows them to modify the entire cascade of TKE? While not definitive, the present results hint
at the presence of both: i.e., particle clustering (which does not have an analog in the viscoelastic
case) can provide an StK-dependent energy source/sink which varies with wavenumbers associated
with the clusters themselves. The signs of this direct influence (Figure 8(a)) suggest that an upscale
energy transfer may be occurring in this process. At the same time, a small-scale damping of
vertical velocity fluctuations is sufficient to induce a reduction in turbulent production throughout
the entire energy cascade. Meanwhile, attempts at understanding TKE content of the dispersed
phase rather than the carrier phase have shown the importance of distinguishing between random,
uncorrelated motions (those caused by a strong time history) and correlated motions of particles
(those caused by local processes such as collisions or low Stokes numbers) (e.g., Février et al.50

and Fox51), which may possibly be related to the two coupling processes outlined here. Only by
continuing to study the dynamics of these inertial particles in two-way coupled flows, however, can
the picture be fully developed.
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